Early Stopping Heuristics in Pool-Based Incremental Active Learning for Least-Squares Probabilistic Classifier

نویسندگان

  • Tsubasa Kobayashi
  • Masashi Sugiyama
چکیده

The objective of pool-based incremental active learning is to choose a sample to label from a pool of unlabeled samples in an incremental manner so that the generalization error is minimized. In this scenario, the generalization error often hits a minimum in the middle of the incremental active learning procedure and then it starts to increase. In this paper, we address the problem of early labeling stopping in probabilistic classification for minimizing the generalization error and the labeling cost. Among several possible strategies, we propose to stop labeling when the empirical classposterior approximation error is maximized. Experiments on benchmark datasets demonstrate the usefulness of the proposed strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers

Probabilistic classification and multi-task learning are two important branches of machine learning research. Probabilistic classification is useful when the ‘confidence’ of decision is necessary. On the other hand, the idea of multi-task learning is beneficial if multiple related learning tasks exist. So far, kernelized logistic regression has been a vital probabilistic classifier for the use ...

متن کامل

Anew Active Learning Techniqueusing Furthestnearestneighbour Criterion for K-nnand Svmclassifiers

Active learning is a supervised learning method that is based on the idea that a machine learning algorithm can achieve greater accuracy with fewer labelled training images if it is allowed to choose the image from which it learns. Facial age classification is a technique to classify face images into one of the several predefined age groups. The proposed study applies an active learning approac...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

NYTRO: When Subsampling Meets Early Stopping

Early stopping is a well known approach to reduce the time complexity for performing training and model selection of large scale learning machines. On the other hand, memory/space (rather than time) complexity is the main constraint in many applications, and randomized subsampling techniques have been proposed to tackle this issue. In this paper we ask whether early stopping and subsampling ide...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 95-D  شماره 

صفحات  -

تاریخ انتشار 2012